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Abstract

In this paper we propose a new methodology for project control under uncertainty. In particular, we integrate Earned Value Methodology
(EVM) with project risk analysis. The methodology helps project managers to know whether the project deviations from planned values are within
the “expected” deviations derived from activity planned variability. Although the methodology is new and innovative, we only go back to the
fundamentals of project simulation to generate the “universe” of possible projects, according to the assumed variability of project activities. Then
we organize and gather the information in order to make the data coherent with EVM. We explain the steps to implement the methodology and we
show three case studies. The methodology makes explicit that the schedule and budget resulting from traditional methods like PERT are
statistically very optimistic.
© 2013 Elsevier Ltd. APM and IPMA. All rights reserved.
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1. Introduction

Project control consists in the comparison of a plan or
baseline with the actual results of the project to identify
deviations and activate early corrective actions if needed.
Earned Value Management (EVM) is a widely used project
management methodology for project control, as it integrates
scope, time and cost control under the same framework (Abba
and Niel, 2010; Anbari, 2003; Blanco, 2013; Burke, 2003;
Cioffi, 2006; Fleming and Koppelman, 2005; Henderson, 2003;
Henderson, 2004; Jacob, 2003; Jacob and Kane, 2004; Kim
et al., 2003; Lipke, 1999; Lipke, 2003; Lipke, 2004b; McKim
et al., 2000).

Anbari (2003), Fleming and Koppelman (2005) and PMI
(2005) explain the main features of the methodology and how
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to implement it. Several authors have improved the traditional
EV by enhancing its capability in evaluating and monitoring
project progress (Naeni et al., 2011; Navon, 2005; Vanhoucke
and Vandevoorde, 2007; Warburton, 2011). It is not surprising
that EV has been applied to many different disciplines and
projects (Al-Jibouri, 2003; Chen and Zhang, 2012; Gowan
et al., 2006; Hanna, 2012; Kwak and Anbari, 2012; Naderpour
and Mofid, 2011).

Succinctly, EVM is based on the representation of three
measures: First, the budgeted cost for work scheduled (BCWS)
also called planned value (PV); second, the actual cost for work
performed (ACWP) also called actual cost (AC); and finally,
the budgeted cost for work performed (BCWP) or earned value
(EV).

The Earned Value Management indicators are derived from
the three previous values: Cost variance (CV = EV − AC) and
schedule variance (SV = EV − PV). A positive variance indi-
cates in the case of CV that the project is under budget and in the
case of SV, ahead of schedule. On the other hand, a negative
variance might be a warning of a problematic situation, showing
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that project is behind schedule or exceeding the planned budget.
In order to compare projects with different sizes, the Performance
Indexes are defined: Cost Performance Index (CPI = EV / AC)
and Schedule Performance Index (SPI = EV / PV). Performance
Indexes are below 1whenever the variances are below 0. Variables
and variances can be represented graphically (see Fig. 1), helping
project managers to monitor project evolution. The graphical
representation of PV is the project cost baseline.

Lipke (2003, 2004a) introduced a new measure, the Earned
Schedule (ES), defined as the date when the current earned
value should have been achieved. ES is calculated by projecting
the EV on the PV curve. Once ES is determined, time-based
indicators can be easily derived from SV(t) = ES − AT and the
corresponding ratio measure SPI(t) = ES / AT, where AT is
the actual time defined as the elapsed time since the beginning
of the project.

Given the non-repetitive nature of projects, uncertainty and
risk are at the very core of Project Management, and project
managers are used to face project delays (and over-costs)
beyond the planned values; consequently project managers
need methodologies to take decisions under project uncertainty.
The typical way to incorporate this uncertainty in project
modeling is by means of stochastic networks where activity
costs and durations are not deterministic but follow certain
probability distributions.

But traditional EVM assumes certainty about the durations
and costs of project activities. For this reason, EVM reports the
project manager whether the project has overruns (costs, delays)
or it is running better than planned, but the methodology does not
specify whether the deviation from planned values is within (or
not) the possible deviations derived from the expected variability
of the project. In other words, perhaps the project is delayed from
planned values (computed, for instance, by means of CPM
(Kelley, 1961; Kelley and Walker, 1989) or PERT (Fazar, 1959;
Malcolm et al., 1959) methodologies), but the delay could remain
within the possible (and most probable) range of delays, taking
into account the intrinsic variability of activities. Alternatively,
the project delay (or over-cost) could be higher than the possible
values of delay, so that some changes have taken place in the
project and some conditions have changed from the planned
conditions of activities variability.
Fig. 1. EVM main variables and variance.
The inclusion of project variability in control methodologies
in general, and EVM in particular is becoming an interesting
research topic within academics.

Barraza et al. (2004) applied stochastic S-curves to determine
forecasted project estimates. Later, Barraza and Bueno (2007)
introduced a probabilistic project control concept by extending
the performance control limit curves to derive an acceptable
forecast of final project performance.

The implications of this stochastic approach in EVM have
been recently incorporated by means of fuzzy approaches
(Naeni et al., 2011). They developed fuzzy control charts to
monitor several EV indexes, and provided a transformation
method based on fuzzified indexes. Leu and Lin (2008)
improved the performance of traditional EV by implementing
the statistical quality control charts. They implemented
individual control charts to monitor project performance data,
and provided a log transformation method. Finally, Aliverdi
et al (2013) apply statistical quality control charts to monitor
earned value indexes.

Vanhoucke (2011) suggested monitoring projects with two
approaches: top-down, based on earned value metrics; and
bottom-up, based on the schedule risk analysis method.
Vanhoucke (2012) studied the reasons why EVM and schedule
risk analysis give better results in some projects than in
others. Hazir and Shtub (2011) explored the relation between
information presentation and project control and they devel-
oped simulation software to face with uncertain environments.

By means of Monte Carlo simulation, we can compute the
statistical distribution functions of project cost and duration
when the project is finished. Therefore, at the end of the project,
we can know, within a particular confidence level, whether the
project finished or not within the “expected variability” (project
under control), and, as a consequence, we can compute buffers
for the project to be under control at the end of the project.
However, project managers do not want to wait until the end
of the project to know whether the project is under control: They
need to know it during project runtime, in order to take decisions
and corrective actions whenever delays (or over-costs) are out of
the expected values.

In order to answer the former question, Pajares and
López-Paredes (2011) suggested to split the final project buffer
into small buffers for every time interval, being the interval
buffers proportional to the risk reduced at the particular time
interval. To this aim, they defined the concept of risk baseline
as the “the evolution of ‘project risk value’ through project
execution lifecycle. The risk of the project at any given time is
calculated as the risk of the project pending tasks (those not yet
completed), assuming that the project has performed as planned
until that given time” (statistical variance can be used as a
measure of risk, both for duration and cost). The risk reduced at
any particular interval can be computed as the difference
between the values of the risk baseline within the interval.

Pajares and López-Paredes (2011) linked the interval buffers
to EVM methodology by comparing cumulative buffers with
cost and time variances at any time. They define two new
control indexes that showed whether the project was under
control (cost, time) or not. Finally, using these indicators,
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Acebes et al. (2013) propose a graphical framework where they
represent the schedule and cost control indexes to monitor and
control projects with uncertainty.

In this paper, we propose an extremely different approach.
We go back to the fundamentals and we use Monte Carlo
simulation to obtain the “universe” of possible different project
runs (at least a significant quantity). Then, for every “possible”
project j (every simulation), we define triads (x, Txj, Cxj), where
x is the percentage of completion, Cxj = x ∗ Cj is the money
spent when the project has been completed at x% (within
simulation j); Txj is the time when the cost Cxj was achieved
and Cj is the total project cost in the j-th simulation.

For the particular case of x = 1, we obtain the set of points
(the distribution functions) of cost and duration at the end of the
project (project 100% completed). Therefore, our methodology
is an extension of the traditional one, with different percentages
of project completion, so that we obtain the distribution
functions (and confidence intervals) of cost and duration at
any percentage of project completion.

In order to make the use of the methodology easier, we split
the triad into a couple of two dimensional graphs (time, x) and
(x, cost). When the project is running, we represent within these
graphs where the project is, so that we can know whether
project cost or duration is under control at any time for a given
level of confidence.

The methodology is coherent with EVM, and the data and
variances from EVM can be easily translated into the graphs.
Indeed, this new approach does not need more data than the
information provided by EVM and the variability of project
activities. And computations are easily implemented by means
of common software.

As far as we understand, one of the main advantages of this
new approach is that we combine two methodologies which are
familiar to project managers: EVM and Monte Carlo simula-
tion. Combining both methodologies we integrate risk man-
agement with the EVM methodology, in other words, we
integrate control and risk under the same framework.

Although we use Monte Carlo simulation to generate the
“universe” of possible projects, the innovation of our approach
is that we arrange the information in order to know whether the
project is within the expected variability at any time. We also
arrange the data, so that it is coherent with “EVM variables”.

The rest of the paper is organized as follows. In Section 2,
we introduce the methodology, afterwards, in Section 3 we
illustrate the method with three case studies. We finally
conclude by summarizing the main contributions and require-
ments of the approach.
Fig. 2. Statistical features of project variability (cost and time) at the end of the
project and at x% of compaction.
2. A new (and simple) approach to project control under
uncertainty

In the new approach, we go back to the fundamentals of
project simulation by Monte Carlo methodology. We simulate
to get the “universe” of possible project realizations, and
we group the information in terms of percentage of project
completion.
Our aim is to know, whether the deviations (cost and
durations) from planned values during project runtime are
within the “planned” variability deducted from the variability of
project activities. Assuming a particular statistical distribution
function for the cost and duration of activities, we can compute
the statistical functions of project duration and cost at the end of
the project by means of Monte Carlo simulation (see Fig. 2).
Although it could be evident, it can be useful for future
explanations to realize that the output of the j-th simulation is a
project finishing at time tj and with a total cost of Cj, and it can
be represented by a dot in Fig. 2, within the cost–time graph. If
we consider thousands of project simulations, we get an “area”
of possible project cost and duration, so that the statistical
distributions can be computed, one for costs (the vertical
distribution at the right side of Fig. 2) and durations (the
horizontal one at the top). Once the distributions have been
computed, it is possible to calculate confidence intervals and
percentiles for cost (for example Pc90, Pc70, etc.) and duration
(Pd90, Pd70, etc.), and also mean values (dmean, Cmean, etc.) and
any other statistical features, like the rectangular areas for a set
of particular percentiles. For instance, in Fig. 2, we have
represented a rectangle with the percentiles Pd90, Pd10, Pc90,
and Pc10 (bold rectangle) and Pd70, Pd30, Pc70, and Pc30
(dot line rectangle) inside.

In the same way we proceed for the end of the project, now
we wonder about the resulting “area” of dots in Fig. 2 drawn
when the projects are, for instance, at one half of its realization.
This means that, for the j-th simulation, we need to compute the
time when the project cost spent reached 0.5 ∗ Cj.

In general, we define a triad (x, Txj, Cxj), where x is
the percentage of completion (measured in terms of cost),
Cxj = x ∗ Cj is the money spent when the project has been
completed at x% (within simulation j); Txj is the time when the
cost Cxj was achieved and Cj is the total project cost in the j-th
simulation. This definition of percentage completed is consis-
tent with EVM methodology. It assumes that the cumulative
planned cost of the performed tasks is an indicator of the

image of Fig.�2


Fig. 3. Graphical representation: triad and projections (time and cost).
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development of the work. Since EV = ∑Start
CurrentPV(completed),

then the percentage can be measured as EV/BAC, where BAC
refers to budget at completion. Given this approach, in each
particular simulated instance of the project we can compute the
planned total cost of the project and track the percentage of the
project back forward measuring the cost of the tasks that have
been completed at any intermediate instant of the simulation.
For every x, we will obtain the “area” of dots representing the
projects that have been at x% of realization and, therefore, we
can compute the statistical distributions for cost and duration at
x% of project completion, and the corresponding percentiles
Pxc90, Pxc70, …., Pxd90, Pxd70, etc. (distributions and rectangle
at the down-left side of Fig. 2). The particular case of x = 1
represents the situation at the end of the project.

If we assume that some of the risks of the project come as a
consequence of uncertainty, it is then important to figure out if
the performance of the project is compatible with the random
nature of the project or if on the contrary, divergences may be
explained by means of the occurrence of unexpected events or
the instability of the assumptions of the project planning stage.
The methodology considers that the stochastic nature of
the project can be modeled as probabilistic distributions of
task duration and cost. The case studies used to illustrate the
approach in this paper consider that task durations follow
different distributions, and costs are function of duration, but
the technique can be generalized for any dependent or
independent random relations between cost and duration as
long as time-accumulated cost trajectories can be simulated.
Under these assumptions the approach allows us estimate
intermediate cost and duration distributions of the project, and
this fact is the basis to understand the control approach. We
want to know how the performance of the project is when we
take into account the “random expected variability of the
project” into the monitoring process of the project through
EVM methodology. If the project is within the limits and
confidence intervals of the project we assume that the variances
can be explained by normal stochastic variability, but if the
project is out of these limits the project manager has objective
reasons for considering that something out of planning may be
happening. The appropriate limits to send warning signals and
to apply corrective measures depend on the specific context of
the project, for instance, strict deadlines and due dates may
need smaller control buffers.

2.1. Projections into cost and time figures

In order to make the methodology easy to use and coherent
with the classical EVM, we split the representation of the triad
(x, Txj, Cxj) into a couple of graphs, one for time and the other
for cost. We can see the projection in Fig. 3. Fig. 3a is the same
with Fig. 2, emphasizing different rectangles representing
different percentiles for several x values.

In Fig. 3c we represent the time projection. For a particular
x, we compute the time corresponding with different percentiles

image of Fig.�3


427F. Acebes et al. / International Journal of Project Management 32 (2014) 423–434
PdD, D∈[0,100] (in the particular case of Fig. 3c we show the
results for Pd90, Pd70, Pd30, Pd10). Then we join all the points
for a particular percentile D, PdD, for all x∈[0,1], obtaining the
curves in Fig. 3c.
Fig. 4. Flow-chart of
In Fig. 3b we represent the cost projection. In this case, cost
is represented in the y-axis and percentage (x) in the x-axis. For
every x, we compute the cost corresponding to different cost
percentiles PcC, C∈[0,100] and then we join the points for a
the methodology.

image of Fig.�4
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particular percentile PcC for all x∈[0,1]. As cost is proportional
to percentage completed, now we obtain straight lines.

We should keep in mind that Fig. 3 is built up during the
project planning phase. The inputs to build the figures are only
the cost and duration distribution functions of the activities and
its precedence relations, that is, the common information
needed for project scheduling and budgeting in uncertain
environments; no more.

In Fig. 4, we show a flow-chart that sketches and sum-
marizes the methodology. For scheduling the project, we can
use any of the typical methodologies as CPM or PERT. The
cost of activities is usually related to duration, depending on
direct and indirect cost relations. By means of Monte Carlo
simulation we generate stochastically compatible instances of
the project, being each instance a possible realization with its
duration and cost. Once the process has been repeated for a
large number of instances (n) we can compute the average cost
and duration, variances and percentiles for each percentage x of
work performed in the project.

2.2. Using the new framework during project runtime

We first need to represent the planned value (cost baseline)
in the graphical framework. The planned value (PV) can be
represented directly in the cost-time plane (see Fig. 5a). To this
aim, we project PV into the cost-x plane (Fig. 5b) and into the
x-time plane (Fig. 5c). At any particular time t, the planned
Fig. 5. Graphical framew
value is PVt, and therefore xt = PVt / BAC, being BAC the
budget at completion (total project budget or planned value at
the end of the project). Therefore, we can represent the points
(xt, PVt) in Fig. 5b and (t, xt) in Fig. 5c.

During project runtime, we have to compute AC and EV as
it is commonly done in EVM. For t = AT (actual time), the
actual cost is ACAT and xAT = EVAT / BAC. Therefore, we can
draw the point (xAT, ACAT) in Fig. 5b and (AT, xAC) in Fig. 5c.
The definition of xAT as the earned value divided by the budget
at completion is at the very core of the assumptions of the
Earned Value Methodology and has been previously used in
literature (Vanhoucke, 2011). Since EV represents the budgeted
cost for work performed and BAC is the final budgeted cost for
work scheduled, EV / BAC measures the percentage of
completed project normalized by the budgeted cost. Moreover,
this definition is equivalent to the approach adopted to compute
the advance of the project when we define the concept triads in
the simulation part of the method, and consequently both
quantities are comparable.

The black line in Fig. 5 represents the AC curve (perfor-
mance), and the pink one is the evolution of PV, as it is usually
represented in EVM. Differences in time from planned values are
expressed in time units, as it happens when we use Earned
Schedule (ES).

At AT = 15, AC = 10240 and x = 75%, the project has
over-costs, as the cost is higher that the PV projection at this
time (Fig. 5b). But the project remains between the percentiles
ork during run time.

image of Fig.�5
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Fig. 6. a) XCV P confidence intervals for cost variance. b) XSV P confidence
percentiles for earned schedule variance.

Table 1
Duration and cost of activities of case study 1. Duration of activities is modeled
as exponential distributions. Variable cost depends on duration.

Id. activity Duration
(mean time) 1/λi

Rate λi Variance
(1/λi)

2
Variable
cost

Fixed
cost

A1 5 0.20 25.00 380 50
A2 1 1.00 1.02 430 40
A3 3 0.33 9.09 370 40
A4 4 0.25 16.11 450 70
A5 2 0.50 4.03 350 50
A6 3 0.33 9.07 300 40
A7 8 0.13 64.38 280 30
A8 3 0.33 8.96 320 30
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Pc90 and Pc70 (red and orange lines respectively). This means
that, taking into account the assumed variability of the activity
costs and durations, if we take a confidence interval of 90%, the
project is under budget (remains under the 90% of confidence
value). But if we narrow the confidence interval to 70% (orange
line), the project is over-budget, the actual cost of the project at
this time is higher than the 70% of the simulated projects. If the
project manager decides to establish a 70% confidence level,
he/she should wonder whether any important change has taken
place with respect to the planned conditions.

In Fig. 5c, we see that the project is delayed at AT = 15 with
respect to the planned value (PV around 5 in this case). But the
project remains ahead of schedule whenever we consider a 90%
confidence level. In other words, with the assumed variability
of the activities, the project will remain at the left side of the red
line in the 90% of the times. However, the project is outside the
Fig. 7. AON network. Case study 1.
confidence interval of 70%. The project manager should decide
what level of confidence to use, according to how narrow the
control he/she wants to be.

Finally, we suggest a change of coordinates for those project
managers who prefer to work with schedule and cost variances
instead of absolute values. To this aim, we use the PV line as
x-axis and we represent the deviations from PV line. We use the
notation XCV P and XSV P to name the percentiles of Ps in
terms of cost and schedule variance respectively (see Fig. 6).
During project runtime, the traditional EVM cost variance can
be directly represented in Fig. 6a, whereas the earned schedule
variance (SV(t)) is represented in Fig. 6b.

3. Case studies

In this paper, we show the results of three case studies.1 In
these cases, we have drawn two PVs: the PV we get when we
use PERT as scheduling method (we call it PVPERT) and
PVMEAN, that is, the planned value we get by computing the
mean value of all the simulations for a particular project
progress x. It is important to notice that the methodology is
general for any PV curve considered by the project manager.
We illustrate the cases using PVPERT and PVMEAN because they
are two usual scheduling techniques, but any other PV curve
considered could be used as project benchmark.

3.1. Case study 1. Exponential distributions

In Fig. 7, we show the activity of node network for case study
1. Based on previous research conducted by Mummolo (1997)
and Pontrandolfo (2000), in this network activity durations are
modeled as exponential instead of normal distributions as the
next case. The rationale behind this assumption rests on the high
level of uncertainty of this type of distribution which highlights
1 Case studies 2 and 3 have been chosen from project network literature, so
that we can show and compare our results with networks previously used by
other authors. We have looked for heterogeneity in the case studies in terms of
probability distributions and network complexity. Both cases are inspired by
Lambrechts et al. (2008) since the network topology highlights the role of
parallel paths (3 paths in this case). In case study 2, we use normal distributions
whereas in case study 3 we work with beta distributions. In the first case study
the use of exponential distributions is inspired by Mummolo (1997) and
Pontrandolfo (2000), which underlies the effect of high uncertainty.

image of Fig.�6


Fig. 8. Control framework for case study 1.
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the difference in project forecasting with respect to PERT
approach. Hazir and Shtub (2011) also use exponential
distributions to show how format information presentation
affects project control. Specific parameters used to model this
case are described in Table 1. In Fig. 8, we represent graphically
our results over 100,000 simulations. PVMEAN and PVPERT lines
have been also represented.

According to PERT methodology, the total project expected
duration should be 11 time units. However using Monte Carlo
simulation, we find that the probability of the project to finish
before this date is just only about 22.25%. In other words,
PERT scheduling is usually too optimistic (from the statistical
point of view). This result was early highlighted by Klingel
(1966), MacCrimmon and Ryavec (1964) and Schonberger
(1981), but in our framework, this issue becomes evident when
representing the results of common project networks. This
Fig. 9. AON network for case study 2.
happens because PERT assumes that the expected value of the
maximum of the durations of two parallel activities equals the
maximum of the expected valued of the durations; and this is
not true.

According to Fig. 8, with the 75% of the work performed,
the project has a delay of almost 10 time units if PERT plan is
used as reference. The project is delayed almost 5 time units
with respect to the percentile Pd70 line but is ahead of schedule
in relation to percentile Pd90.

The project has an over-cost of 3000 monetary units with
respect to the cost baseline deducted from the PERT schedule,
and an over-cost of 5000 units with respect to the percentile
Pc30 in costs, but it is almost 1500 units under budget if we
compare it with percentile Pc90 in costs.

3.2. Case study 2. Normal distributions

Case study AON network is represented in Fig. 9. This
network has been used previously by Lambrechts et al. (2008)
for project scheduling research. This graph contains three parallel
paths. Duration and cost of these activities are described in
Table 2.

Again, it is straightforward to check that the conventional
PERT schedule is very optimistic, 13 time units, while the
probability of finishing before that date is just about 18.78% if
we compute it using simulation. When the 75% of the project

image of Fig.�9
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Fig. 11. a and b: cosst and time graphs.

Table 2
Case study 2. Duration activities are modeled as normal distributions. Variable
cost depends on duration.

Id. activity Duration Variance Variable cost Fixed cost

A1 2 0.15 555 200
A2 4 0.83 1300 450
A3 7 1.35 48 45
A4 3 0.56 880 36
A5 6 1.72 14 20
A6 4 0.28 1210 40
A7 8 2.82 725 150
A8 2 0.14 100 150
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has been performed, the project is delayed 0.62 time units with
respect the PVPERT curve, but it is 0.81 time units ahead of
schedule when we compare with the 90% confidence line
(Fig. 10). The project has an over-cost of 790 monetary units
when we compare with the planned costs derived from PERT
scheduling, but it is 1600 monetary units under the 90% cost
confidence line.

Changing the reference coordinates, in Fig. 11a and b, we
represent the x variances.

In these time and cost graphs, we represent the evolution of
the project executed, compared with respect to the planned
value curve. In each period of control and given a project status,
Fig. 10. Control framework for case study 2.

image of Fig.�10
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Table 3
Case study 3. Duration activities are modeled as Beta distributions. Variable
cost depends on duration.

Id. activity Minimum Likeliest Maximum Variable cost Fixed cost

A1 1.42 2 3.74 555 200
A2 2.63 4 8.12 1300 450
A3 5.25 7 12.25 48 45
A4 1.88 3 6.37 880 36
A5 4.03 6 11.92 14 20
A6 3.19 4 6.42 1210 40
A7 5.46 8 15.61 725 150
A8 1.44 2 3.68 100 150
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we can observe the absolute delay in terms of both cost and
time. In this particular example the evolution of the project
seems stable between the curves corresponding to percentiles
70 and 90 of probability.

3.3. Case study 3. Beta distributions

The AON network is the same with that in case 2, the
one used previously by Lambrechts et al. (2008) for project
Fig. 12. Control framewo
scheduling research. The activities of the network have been
modeled according to a beta distribution function, as reflected
in Table 3.

Again, it is straightforward to check that the conventional
PERT schedule is very optimistic, 13 time units, while the
probability of finishing before that date is only just about
5.74% if we compute it using simulation. When approximately
the 75% of the project has been performed, the project is
delayed 0.28 time units with respect the PVPERT curve, but it is
1.86 time units ahead of schedule when we compare with the
90% confidence line (Fig. 12). The project has an over-cost of
2043 monetary units when we compare with the planned costs
derived from PERT scheduling, but it is 2385 monetary units
under the 90% cost confidence line.

4. Conclusions

In this paper, we suggest a new methodology for controlling
projects under uncertainty. We integrate EVM methodology
with all the literature concerning activity and project variability.
EVM was developed under certainty assumptions, therefore
rk for case study 3.
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project managers know whether the project is delayed or ahead
of schedule, has over or under costs, depending on comparisons
with planned values. But when we introduce variability within
the analysis, we are more interested in knowing how far the
deviations from planned value are (from the statistical point of
view). This way, project managers will know whether the
deviations from planned values are or not in agreement with the
deviations assumed from activities variability and, therefore,
take early corrective actions.

In order to implement the methodology, we do not need
more information than the data needed for using EVM, the
probability distribution functions of the activities (as needed by
most of the scheduling methodologies like PERT), and basic
knowledge about Monte Carlo simulation.

The graphical framework underlies the optimistic schedules
and cost baselines obtained when using the PERT methodol-
ogies. Do not worry if your project is delayed according to
PERT scheduling. From the statistical point of view, in most of
the cases the probability of achieving the PERT time is under
30%.

Although it is a new and innovative methodology, we only
go back to the fundamentals of project simulations, as we
generate the “universe” of all possible projects, and we only
reorganize and gather the simulated data in a language coherent
with Earned Value Methodology.
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