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Abstract

The aim of this paper is to describe a new integrated methodology for project control under uncertainty. This proposal is based on Earned Value
Methodology and risk analysis and presents several refinements to previous methodologies. More specifically, the approach uses extensive Monte
Carlo simulation to obtain information about the expected behavior of the project. This dataset is exploited in several ways using different
statistical learning methodologies in a structured fashion. Initially, simulations are used to detect if project deviations are a consequence of the
expected variability using Anomaly Detection algorithms. If the project follows this expected variability, probabilities of success in cost and time

and expected cost and total duration of the project can be estimated using classification and regression approaches.
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1. Introduction

Project control and monitoring involve comparing a plan or
baseline with the actual performance of the project. The analyses
of these deviations are aimed at taking actions, if needed, to early
correct the possible problems that can put in danger the objectives
of the plan. The most popular managerial methodology used in
Project Management is Earned Value Management (EVM). This
framework integrates in a unified approach, three dimensions of
the project — scope, time and cost — using monetary units as
common pivotal measure (Abba and Niel, 2010; Anbari, 2003;
Blanco, 2013; Burke, 2003; Cioffi, 2006; Fleming and
Koppelman, 2005; Henderson, 2003, 2004; Jacob, 2003; Jacob
and Kane, 2004; Kim et al., 2003; Lipke, 1999, 2003, 2004;
McKim et al., 2000).
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Recent research enhances the standard approach to EVM
incorporating statistical analysis, learning curves or fuzzy set
theory, especially for project predictions at completion (Colin and
Vanhoucke, 2014; Hazir, 2015; Lipke et al., 2009; Moslemi
Naeni and Salehipour, 2011; Naeni et al., 2011; Narbaev and De
Marco, 2014; Plaza and Turetken, 2009; Tseng, 2011; Wauters
and Vanhoucke, 2014). An active area of development is cur-
rently focused on integration of EVM with risk management
analysis. Progress in this line has produced decision tools based
on two metrics to estimate if the deviations may be caused by
structural problems or if they are compatible with the expected
range of variability, derived from the stochastic nature of the
project — estimated variability of costs and durations of project
activities — (Pajares and Lopez-Paredes, 2011). These results have
been refined using Monte Carlo simulation and statistical control
charts (Acebes et al., 2014).

In this work, we initially investigate the alternative use of
Anomaly Detection algorithms to detect structural deviations
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in projects. Assuming the stochastic definition of the project,
we then advance the research proposing the use of statistical
learning techniques and Monte Carlo simulation to estimate the
probability of over-runs (delays or over-costs) and the success
decision boundaries. The analysis is completed with additional
methodologies to predict not only over-runs but also the expected
budget and time.

The rest of the paper is organized as follows. First, in the
Background section, we review previous methodologies related
to the same problem we face in this research. Then in the
Methodology section, we explain the statistical learning meth-
odologies we use in our framework, and how we can apply them
for project control. In particular, we explain the role of Anomaly
Detection algorithms, and classification and regression tech-
niques. Finally, we address a case study to show how these
methodologies work together with EVM for project control.

2. Background

EVM does not provide a way to determine whether deviations
are due to the expected range of variability associated with the
stochastic nature of the project or they may be caused by un-
expected events affecting project runtime. Knowing the reasons
for project over-runs would provide the project manager with
valuable information for decision-making. Concretely, the fact of
the deviations exceeding the expected variability would be a
warning sign that the project realization is probably not running as
planned. Being aware of this situation would allow applying
actions to redirect the evolution of the project.

With this idea in mind, previous research has provided two
different frameworks based on EVM that inform whether de-
viations are within the probabilistic expected level or not:
the Schedule Control Index (SCol)/Cost Control Index (CCol)
framework (Pajares and Lopez-Paredes, 2011) and, more re-
cently, the Triad Methodology (Acebes et al., 2014).

2.1. The Schedule Control Index (SCol) and Cost Control Index
(CCol) framework

Pajares and Lopez-Paredes (2011) use Monte Carlo simulation
to obtain the statistical distribution of the cost and the duration at
the end of the project. This information is used to select the
confidence level (both in terms of time and in terms of cost) that
will be used to monitor the performance of the project. If the cost
(time) at the end of a particular project is below the cost (time)
at the selected confidence level, the cost overrun (delay) is
considered to be caused by the randomness of the real costs
(durations) of the activities. Therefore, the difference between the
project cost (duration) at the confidence level and the mean
project cost (duration) gives an idea of the maximum deviation
that can be explained by the stochastic nature of the cost
(duration) of the activities. In other words, this difference is
considered as the size of the cost/time buffers for the project.

Nevertheless, knowing the size of these buffers at the very
end of the project is useless since it does not permit to make
decisions that rectify the project performance during runtime. It
would be desirable, however, to know what portion of these

buffers is available at any particular time during the project
execution. To this aim, the authors develop a system to redistribute
the size of project cost and time buffers throughout the project life
cycle. In order to determine the portion of buffer that corresponds
to each period, the authors define the project risk baseline as the
residual uncertainty to complete the remaining activities of the
project. Then, every time interval is provided with a portion of the
cost/time buffers namely ACBf; and ASBf, respectively. The size
of these buffers is proportional to the risk eliminated between two
consecutives periods (i.e. the difference between two adjacent
points in the risk baseline).

The authors define two control indices based on these buffers:
Cost Control Index (CCol) and Schedule Control Index (SCol),
which are equal to the traditional indices used by EVM: schedule
variance (SV) and cost variance (CV) plus the corresponding
portion of the cost/time buffer ACBf; - z5/ASBf;:

SCol; = ASBf; + SV

CCol, = ACBf_gs + CV.

Therefore, the new criteria to diagnose the time performance
of the project are the following: the project is behind schedule if
SV <0 (as in the traditional EVM). However, depending on
the value of ASBf,, this delay may be due to by the randomness
of the real duration of the activities or caused by structural
problems. If ASBf; is greater than SV (and thus SCol, > 0), we
infer that the delay falls within the expected variability. However,
if SV is greater than ASBf; (and thus SCol; < 0), the delay may
be caused by structural problems and thus require measures to
redirect the performance of the project.

Similarly, the index CCol,; warns about cost overruns (CV > 0)
and, when they occur, it reports whether the overruns are within the
expected variability (CCol; > 0) or not (CCol; < 0).

2.2. The Triad Methodology: (x, t, ¢)

Acebes etal. (2014) developed a different method to determine
whether the project deviations are within the expected variability
or whether, on the contrary, they are due to undiscovered factors
affecting the project performance. This method also uses Monte
Carlo simulation to obtain the statistic distribution of all the
possible realizations of a project. However, unlike the method
shown above, the authors directly determine the statistical dis-
tribution of cost and time at intermediate percentages of com-
pletion of the project.

For every realization of a Monte Carlo simulation, the system
provides a final cost and time. That is, when the percentage of
completion of a simulation is 100% (x = 100%), we obtain the
final cost for that simulation (cgq9,) and the final duration for that
simulation (t;ge,). This triad (100%, t1909, C100%) giVes a name to
this methodology. Afterwards, the algorithm calculates the cost
and time at the desired intermediate time intervals for that par-
ticular simulation. It is important to mention that the percentage of
completion of the project is calculated in terms of cost. This means
that, for example, the project is 50% completed at the time when
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the cost of that realization of the simulation reached a half of its
final value. Therefore, at this point of the simulation, the triad that
defines the state of the project is (50%, tsges, C5004)-

Each realization of the Monte Carlo simulation will reach
the intermediate points of completion at different levels of cost
and time. This leads to a point cloud (in terms of time and cost)
at the selected intermediate points. This information allows
calculating statistical information at these intermediate time
intervals. Therefore, we can determine a confidence level that
may be used during the realization of the real project to check if
the actual values of cost and time at that percentage of completion
fall within the confidence level (project under control) or not
(need for corrective measures).

In order to determine if the cost/time of a running project is
under control (or not) at any time for a given confidence
interval, the authors represent the values of the triads in two
dimensional graphs: one for cost monitoring (X, ¢,) and another
for time monitoring (ty,X).

3. Methodology
3.1. Triads and Monte Carlo simulation

The basis of this research stems from the triad method by
Acebes et al. (2014) described in the previous section. In the
same way, we also generate a data universe (realizations of the
project) by means of Monte Carlo simulation, and this data is
used to find the statistical properties of the project at any point
during its execution.

However, we make a change in the variables making up the
triad. Specifically, we consider a triad comprised of the terms
(EV, t, c¢) instead of (%, t, c). That is to say, for every
realization of the Monte Carlo simulation, we register the
values of EV (earned value) along with the corresponding cost
(c) at several intermediate points (t) along the project life cycle.
This refinement overcomes some of the limitations of the
technique proposed by Acebes et al. (2014), as it required
assuming that EV was linear with work execution (i.e. EV =
% - BAC; BAC: budget at completion) whereas the method-
ology proposed in this article does not require such a
hypothesis. Furthermore, the new approximation is more
usable and intuitive from a practitioner’s viewpoint. In fact,
when monitoring a project it is not straightforward to calculate
the accurate percentage of completion; whereas EV (i.e. the
budgeted cost of work performed) is a concept project
managers are familiar to work with.

Therefore, by means of Monte Carlo simulation, we obtain —
at certain levels of EV along the project execution — a point
cloud that represents the time and the actual cost of every
realization of the simulation. Then, advanced statistical
methodologies are applied to this data. On the one hand,
treating the data as a classification problem allows knowing
whether the project will finish in time and cost. On the other
hand, processing the data as a regression problem allows
forecasting the expected cost and time at termination of the
project.

3.2. As a 2D density distribution. Anomaly Detection algorithm

Acebes et al. (2014) try to discern the ranging of expected
variability generating different instances of the project accord-
ing to the planned variability in different development stages.
These simulation results are used to build percentile curves to
estimate the expected ranges of costs and time. This approach
represents an improvement compared to previous techniques
but ignores the time—cost correlation that is sometimes implicit
in the definition of duration and cost of individual activities.
Decoupling these magnitudes can prevent from detecting
anomalous situations in the project (producing false nega-
tives). One of the contributions of this work is to propose the
techniques developed for Anomaly Detection (also known as
novelty detection, outlier detection, deviation detection or
exception mining (Ding et al., 2014)) together with Monte
Carlo simulation and Triad Methodology as support tool to
control and monitor stochastic projects (estimating if project
deviations are consequences of the project variability) and —
if needed — to prompt the appropriate correcting actions.

Novelty detection entails finding the observations in test
data that differ in some respect from the training data (Pimentel
et al., 2014). Typically the problem emerges in situations in
which there are enough data from normal events but data about
abnormal situations is rare or inexistent. Precisely the goal of a
solution to this problem is identifying observations that deviate
or are inconsistent with the sample data in which they occur
(Hodge and Austin, 2004).

In order to identify situations during development of the project
abnormal to the stochastic definition of the project, again multiple
instances of the project are simulated using the methodology
described in the previous section. Given a development stage of
the project determined by an earned value, the idea is to build a
model that describes the normal range of behavior of the project.
This normality model is used as a test, comparing it with the
development of the real project. A wide range of the techniques to
solve this problem gives then a score (sometimes probabilistic) to
the given observation that compared with a decision threshold
results in a report about the abnormality of the situation. Basically,
if the deviations of the project can be explained by its planned
variability or if they are indicating abnormal performance and the
need to take correction measures.

There are several families of strategies to deal novelty
detection techniques (Hodge and Austin, 2004; Markou and
Singh, 2003a,b; Pimentel et al., 2014). Given their interpret-
ability, in this work we use a probabilistic approach. These
methodologies are focused on estimating the generative proba-
bility density function from the training data. This function is then
used to calculate the probability that a new observation may have
been generated by the distribution (Pimentel et al., 2014). Taking
into account that the amount of data is obtained by simulation
(and consequently can be large enough to have low variance)
we have used a non-parametric approach — multivariate density
estimation — to reduce bias.

Multivariate density estimation involves fitting a surface, a
kernel, on every point of the data set and smoothing its con-
tribution into the space around. Then all surfaces are aggregated
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together giving the overall density function. This process is
summarized in Fig. 1.

The selection of the smoothing parameter, bandwidth, is
crucial because it determines the quantity of smoothing of the
kernels and so the accuracy of the fitting. In multivariate density
estimation, the bandwidth is a matrix that allows the orientation
of the kernels and so the orientation of the estimated density
surface. Different techniques for bandwidth selection have been
widely studied for the univariate case, but the best methodology
is yet considered case-dependent (Zambom and Dias, 2012). For
the multivariate problem, the most advanced selector to date is the
smooth cross-validation (SCV) methodology, which fits a full
bandwidth matrix (previous techniques adjusted diagonal band-
width matrices) (Duong and Hazelton, 2005).

We have used the function Hscv for the smoothed cross-
validation (SCV) bandwidth selector and the function kde for
kernel density estimation with radial kernels, both from the R
package ks (Duong, 2007).

3.3. As a classification problem

Analyzing the data as a classification problem allows us to
estimate the probability of the project of finishing in time and/
or in cost. The following sections are devoted to explaining
what we understand by classification and the type of validation
used to select a classification technique and estimate its error. The
different classifier algorithms used are then succinctly presented.

3.3.1. Classification

A classification problem aims to predict a quantitative variable,
often called response, output or dependent variable, with a set of
qualitative and/or quantitative variables called predictors, inde-
pendent variables, or just variables. Adopting this perspective — a
classification problem — with the simulated triads can be very
useful for project control analysis. Let’s assume a stochastic
monitored project in any intermediate situation, a relevant
question for a project manager could be: “will the project finish
in time and cost?” Or more precisely, “how likely is the project
to finish in time and cost?”. If completing the project in time is
modeled as a quantitative variable Yes/No or completing the

X X

Fig. 1. 2D kernel density estimation approach. Every point in the dataset
includes an individual kernel (left), all the individual kernels are aggregated to
obtain a general density function (right).

Based on http://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation.

project under budget is also modeled as quantitative variable
Yes/No, all the ingredients for a classification problem are
present.

Using the EVM framework, any project in progress can be
characterized by its t = AT (actual time), its AC (actual cost)
and its percentage of completion xot = EVr / BAC. We propose
using classification algorithms (classifiers) that fed with this
information can provide an answer to the previous questions. In
order to do so, our methodology involves selecting an appropriate
classifier and, for each x of analysis (when x is equal to Xst),
training the classifier with the Monte Carlo simulations. For each
simulation j and an x of analysis, Ty; and C,; are the independent
variables of the classification problem to train the classifier, and the
output of each instance is the state of the project from the budget
perspective, i.e., if the j simulation finished under budget or not; or
the state of the project from the time perspective, i.e., if it finished
in time or not. Once the classifier is trained, the output of the
monitored project can be predicted given its current AT, AC and
EV. Beyond that, taking into account that many classification
algorithms do not only compute the most likely output but also the
probability of each response, the classifier can also provide the
probability of finishing in time and under budget if no additional
correction measures are taken. Moreover, project managers can
also be reported with the decision boundaries of the algorithm, that
is, the lines AT, AC for a given intermediate x that partitions the
space of development of the project in more chances to finish in
time or cost than to incur in delay or over-cost. Or in other words,
what are the stochastic limits of time, cost in the development of
the project that maintain a favorable forecast for the project.

3.3.2. Nested cross validation

Classification algorithms often capture patterns that are
characteristic of the particular training data set but that cannot
be generalized to independent data, especially in high flexible
and low biased models. Classifiers overfit training data, and
hence we can only trust in those assessments based on data not
used during training.

Cross-validation techniques group together a family of
strategies to properly select the specific model among several
options or assess the model’s performance of a given choice.
K-fold cross-validation is one of the most popular approaches.
This process consists in randomly partitioning a data set into k
subsets — folds — with the same number of elements. Correl-
atively the classifier is trained using k — 1 folds and assessed
with the remaining fold as independent data. Averaged results
of k rounds decrease the influence of any particular training/test
data division. Moreover, multiple measures of the performance
allow estimating the dispersion and the test error of the statistic.
Previous research shows thatk = 5 ork = 10 provide an adequate
bias-variance trade-off of models assuming a moderate compu-
tational cost (Hastie et al., 2009).

Although cross-validation can be used for model selection
and model assessment, recent studies (Anderssen et al., 2006;
Varma and Simon, 2006) warn about an optimistic bias in error
estimation when the error obtained during model selection is
reported as an estimation of the model performance. In order to
obtain an unbiased estimation of the true performance error a
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nested cross-validation scheme has been suggested (Anderssen
et al., 2006; Varma and Simon, 2006).

Stone (1974) summarizes the gist of nested cross-validation
as “cross-validatory assessment of the cross-validatory choice”.
Nested cross-validation involves two nested loops: an inner
loop aimed at model selection in which the parameters of the
algorithm are estimated, and an outer loop to assess the un-
biased performance of the model selected in the inner loop.
Original data is partitioned using a k-fold cross-validation scheme.
The inner loop receives iteratively data from k — 1 folds which in
turn are employed as input data in a k-fold analysis for every
combination of parameters tested for model selection. The model
with lower error in the inner fold is tested in the outer loop.

3.3.3. Quadratic discrimination analysis

One of the most popular Bayesian classifiers is the dis-
criminant analysis. Given an observation X, these algorithms
are based on computing the probabilities Pr(Y = k|X = x) for
each possible class k, and assigning the observation to the class
with higher probability. In order to estimate these conditional
probabilities (posterior probabilities) Bayes’ theorem is used:

Pr(Y = KX = x) = — e k() (1)

> i)

where m is known as prior probability and denotes the probability
that a randomly chosen observation belongs to the class k and
fi(x) is the density function of X for an observation that belongs to
the class k (Pr(X = x|Y = k)). When the training data contains
enough observations and comes from a random sample, T, can be
estimated as the proportion of each class. However, obtaining an
estimation of fi(x) requires some assumptions about the form of
the distribution. Quadratic discriminant analysis (QDA) assumes
that each fi(x) follows a multivariate Gaussian distribution with a
class-specific mean and a class-specific covariance matrix (Hastie
et al., 2009). This assumption entails estimating more parameters
than if we suppose that the covariance matrix is equal for all the
classes (linear discriminant analysis), however this a better choice
since QDA is more flexible — boundaries separating classes can
be any conic section and consequently nonlinear — and the size of
the training set is not a major concern for this application. Besides,
this classifier directly gives a probability of belonging to each k
class, something relevant from a risk management point of view.
A project manager controlling a project in an intermediate stage is
not only interested if finishing a project on time is more probable
than completing it with delay but also is relevant to estimate the
probabilities of each event. We have used R package “MASS”
(Venables and Ripley, 2002) for the QDA classification analysis
in this work.

3.3.4. Random Forest

A tree is a nonparametric model composed of nodes and
links in a hierarchical structure that can be used for clas-
sification or regression. In a classification problem, every
node represents a test and terminal nodes associate an input
that passes all tests until that terminal node, with a class label.
Tree models present many advantages. They are invariant to

monotonic transformations, robust and straightforward to
interpret. But they can suffer from high variance problems,
that is, the tendency to overfit.

Random Forests are a technique for reducing variance in
high-variance low bias machine learning methods (Breiman,
2001). Based on the concept of bagging and bootstrap aggregation
(Breiman, 1996), Random Forests consist on building an en-
semble of models, trees, to form a super model, the forest (Fig. 2).
Each tree is built from an uncorrelated bootstrap sample from the
training data set, using in each node only a subset of the predictors
available to decide. Once all the trees are trained, they are all
grouped in a combined metric, such as a majority rule vote in the
case of a classification problem.

Random Forest are becoming widely used by reason of its
advantageous features (Criminisi et al., 2011): they have fast
and parallelizable algorithms, do not suffer from overfitting,
and can exploit “Out-Of the Bag” (OOB) data to analyze the
relative importance of the predictors in the classification decision
and to estimate the classification error pretty accurately.

3.3.5. Support Vector Machines

Support Vector Machines (SVMs) are supervised learning
algorithms initially developed for binary classification but pos-
teriorly generalized for multiclass classification or regression
analysis. In fact, the regression version of this algorithm has been
recently used in Project Management for prediction and project
control purposes (Wauters and Vanhoucke, 2014). However, the
use of SVM in this paper is focused on classification.

The gist of SVM is founded on a simple binary linear
classification algorithm, the maximal margin classifier, which
given a set of training examples, each belonging to one of two
classes, finds the optimal separating hyperplane that divides the
space of features into the two categories maximizing the sep-
aration margin between the classes (James et al., 2013). This
algorithm classifies new observations to the class according to
the side of the hyperplane. Although very intuitive, this clas-
sifier requires that the categories be linearly separable which is
not often the case.

SVM refines this idea extending it to non-linear decision
boundaries enlarging the feature space using kernels but also
including the concept of soft margin — some training examples
are allowed to be in the wrong side of the margin or even the
hyperplane — in order to deal with non-separable cases.

One of the problems of SVM comes from the fact that they
do not directly give a probability about the prediction, a key
feature to control and monitoring support for a project manager.
This is usually circumvented fitting a logistic distribution using
maximum likelihood to the predicted data of the classifiers
(Platt, 2000).

In this paper SVM classifiers with radial kernels have been
implemented using R package ‘€1071° (Dimitriadou et al., 2008).

3.4. As a regression problem
Data obtained from the triad method not only can be used to

estimate the probability to incur in overruns. Considering that
information as a regression problem, the expected cost and time
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Fig. 2. The Random Forest algorithm generates ntree CART trees (T), each one trained from a bootstrapped sample X and using stochastically selected features
at each split. For classification problems each tree of the forest (ensemble) votes to give a consensual class.

at termination of the project can also be estimated. In the next
sections we give some background about the definition of the
regression problem and explain the techniques used in this
paper. The validation approach is again nested cross-validation.

3.4.1. Regression

A regression problem entails the prediction of a qualitative or
continuous variable, also called response, output or independent
variable as in the classification problem, with a set of qualitative
and/or quantitative variables, the predictors.

In this section we look to the EVM from another perspective:
a regression problem which aims to predict the expected budget
and time left at a given time defined by a triad (Xa1, Txi, Cxi).
With this technique, if the project is over-run, we can predict
the over-cost and the delay it is experiencing; or the opposite
way, how much budget and time the project has left until
the finalization. Hence, the expected budget and the ex-
pected delay are our response variables, and T,; and C,; our
predictors.

Typically the relationships between the predictors and the
response are non-linear in real problems. Although linear models
have some benefits such as that allow for relative simple inference,
non-linear models are more flexible and may lead to more accurate
predictions, at the expense of a less interpretable model. One
option to approach this is to include non-linear transformations of
the predictors in a linear regression model. In this work we address
for an even more flexible alternative, the Generalized Additive
Models.

3.4.2. Generalized Additive Models
The Generalized Additive Models (Hastie and Tibshirani, 1990)
allow to define non-linear relationships between the predictors and

the response, without losing the additive characteristic of the
multivariable linear regression models which allow to discern the
individual contributions of each predictor to the response. The
regression problem is reformulated such that:

Y =P+ > fi(X)) (2)

where f; are the unspecified smooth functions. Not all functions
need to be non-linear. We can also define nonparametric functions
in two predictors, or different functions for each level of a factor
(qualitative variable).

In this work we have used two types of flexible rep-
resentations for fj(X): natural splines, an expansion of basis
functions, and local regression, which belong to the group of
scatterplot smoothers.

To fit both regression models, we have used the backfitting
algorithm (Hastie et al., 2009) for fitting additive models
estimating all functions simultaneously by iteratively smooth-
ing partial residuals. We have used the R package “gam: Gen-
eralized Additive Models” (Wood, 2006).

3.4.3. Natural splines

A smooth function can be represented by using an expansion
of basis functions, such as polynomials. A spline is a function
piecewise-defined that allows for local polynomial representa-
tion, defining several function intervals separated by knots. To
smooth the places where the polynomial pieces connect, one
can impose the function to have continuous first and second
derivatives in the knots; this approach is called cubic spline and
it is the most used type, although higher degree fits can be used
if more smoothness is needed in the joints.
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A natural spline imposes the additional constraint that the
function is linear beyond the boundary knots, to avoid the
erratic behavior of polynomials near the boundaries (Hastie et
al., 2009).

We have used the package “splines” for R. The function ns()
generates a natural cubic spline basis matrix and the positions
of the knots are adjusted using the observations, given the
number of knots.

The model proposed is a GAM using natural splines (ns) as
functions, as Eq. (3) summarizes:

Y =P+ ns(TXj) + ns(ij). (3)

The number of knots for both predictors has been selected
simultaneously so that the model minimizes the Mean Square
Error of the predictions, using the nested cross-validation
methodology.

3.4.4 . Local regression

Local regression is a different approach for fitting a smooth
function. It is a nonparametric model which involves fitting a
low-degree polynomial model at each point of the training data
set, using a subset of the data. The points are weighted so that
the closest have the highest weight, using a function to assign
these weights, known as kernel, and a parameter to define the
size of the neighborhood (related to the kernel used), and the
model is fitted applying weighted least squares regression. The
degree of the polynomials to be used also needs to be defined,
typically 1 or 2.

We have used the R package “gam” and the function “lo()”
to fit a GAM model with local regression (loess from package
“stats”) as building blocks, as Eq. (4) summarizes:

Y = By + 10(Tx;) + 1o(Cy;). (4)

The degree of polynomials to be fit is set to 1 (default). The
size of the neighborhood is controlled by the parameter span or
a (“for a < 1, the neighborhood includes proportion « of the
points, and these have tricubic weighting (proportional to (1 —
(dist / maxdist)*3)"3). For a > 1, all points are used, with the
‘maximum distance’ assumed to be a”\(1 / p) times the actual
maximum distance for p explanatory variables.”) (Cleveland et
al., 1992). The value of span for both predictor models has been
chosen from 0.1 to 1 using nested cross-validation and selecting
the combination of both span parameters that minimizes the
Mean Square Error of the predictions.

4. Case study
4.1. Description

We illustrate our approach with an example. This selected
case has been previously used in project network research
(Acebes et al., 2014) and is based on Lambrechts et al. (2008).

The activity-on-node (AON) network is shown in Fig. 3. The
network activity durations of this example are modeled as normal
distributions, one of the most common in project literature. The

(O—@O—Q

O au©
—(—(

Fig. 3. AON network.

chosen network topology highlights the role of parallel paths to
better illustrate the usefulness of the approach.

The details of the parameters used to model this case are
described in Table 1. Please note that for the sake of simplicity,
costs are modeled depending deterministically on duration
(variable costs determine the cost of the task for time unit). All
the methods explained can be used relaxing this assumption
and including any stochastic distribution in costs and durations.

In order to calculate the Earned Value of a simulated project,
a baseline plan is needed. Table 2 shows the PV assumed for
the exercise.

Our analysis is focused when the percentage of work per-
formed measured in terms of earned value of the project is 50%
of the budget at completion (planned value at the end of the
project), but the same reasoning could be applied to any other
percentage.

4.2. Results

We begin the analysis with the Anomaly Detection system
obtained through Monte Carlo simulation and posterior 2D
density distribution. This analysis allows determining if given
an advancement of the project — measured in terms of earned
value (corresponding in this case to the 50% of the budget at
completion) —, the values of actual time and actual cost of the
project are within the expected variability. In Fig. 4 100,000
simulation points of the project for that earned value and an
adjusted density distribution that summarizes them are represent-
ed. Contour lines represent the probability that the project is
without the expected range under the assumption that the project

Table 1
Duration and cost of activities of the case study. Duration activities are modeled
as normal distributions and costs depend linearly on duration.

Id. activity Duration Variance Variable cost
Al 2 0.15 755
A2 4 0.83 1750
A3 7 1.35 93
A4 3 0.56 916
AS 6 1.72 34
A6 4 0.28 1250
A7 8 2.82 875
A8 2 0.14 250



Valladolid
Resaltado

Valladolid
Resaltado


1604

Table 2
Baseline plan for the project.
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is following the stochastic process considered in the project
definition. To illustrate the use, imagine that the project manager
decides to control the status of the project at an instant in which
the EV is 50% of'the BAC, and the actual time and actual cost are
given by point 1 in Fig. 4. In this case there is no evidence that
suggests any process that is interfering beyond the expected
variability of the project. On the contrary, if the point of the
project is number 2, the probability that this situation has been
obtained as consequence of just randomness is low (5%) and
perhaps the project requires to figure out whether there are
additional structural causes that are taking place in the project
which are deviating it from the planned schedule. Note that this
method can detect anomalies consequence of the expected
correlation of time and cost (point 3) that may be considered as
normal if those variables are decoupled as in previous methods
(Acebes et al., 2014).

Fig. 5 shows two rectangles computed using the Triad
Methodology, one for the 95% confidence interval (per-
centiles P4 2.5 and P4 97.5 for time, and P, 2.5-P, 97.5 for
cost) and another for the 75% confidence interval (P4 12.5—
Py 87.5, P, 12.5-P, 87.5). Comparing these predictions with
the actual Anomaly Detection estimation proposed in this work,
one can see that, for example, a point in the 95%-square top
left area (like point 3) could be erroneously interpreted as a
project within the assumed limits of variability using the Triad
Methodology.

If the conclusion of the previous result is that the model
follows the expected variability, we can go beyond in the
analysis and determine the probability of finishing the project
with delay or overcost depending on the current situation
(assuming that the project follows the stochastic pattern
defined in the plan). As explained in the Methodology section,

Probability Density Estimation

Cost
20000 25000

15000

10000

12

Time

Fig. 4. 2D probability density estimation obtained for the case study when the EV = 50% of BAC. Point 1 represents a point within the expected variability ranges.
Point 2 can be considered a warning situation, and the probability that this point is reached just by random is only 5%. Point 3 is a point out of range which previous

approaches do not detect as anomalous.
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Fig. 5. Comparison of Triad Methodology versus Anomaly Detection. Rectangles represent the 95% and 75% confidence intervals for time and cost using the Triad

Methodology.

from complete simulations of the project and pivoting for the
same earned value (in our example 50% of BAC), for each pair
time and cost, each simulation is classified as a red point (Fig. 6,
above on the left) if the simulated project finished with overbudget
or green if the project finished with a cost lower than planned.

Original data

25000 -

20000 - Over-cost
‘g No
[&]

o Yes

15000 -

4
10000 -
| i | | i |
0.0 25 50 7.5 10.0 12.5
Time
Original data

25000 -

20000 - D Delay
‘g’ No
(&)

®* Yes
15000 -
10000 - bys
| i | | i |
0.0 25 50 75 10.0 125

Time

Cost

With this dataset several classification models are assessed using
nested cross-validation. In the case of our example, SVM with
radial kernel obtains better results than the rest of the tested
classifiers (although this may depend on the project and the level
of development). This model allows to represent the probability of

Probability of over-cost

I I 1 L I
25000 -
20000 - # o
0.4
15000 -
02
10000 r 0.0
T T T T T
2 4 ] 8 10
Time

Probability of delay

25000

20000

04
15000
02
10000 0.0
2 4 6 8 10
Time

Fig. 6. Project analysis as a classification problem. Simulation results are labeled as over-run or not depending on the final simulation result (left). These datasets are
used to fit classification models (right). These models give an estimation of the probability of over-cost (up) or delay (bottom). Boundary decisions represent points in

which the probability of over-run is 0.5.
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overcost and the decision boundary which splits the points in
which is more likely to finish on budget and the points in which is
not. Fig. 6 represents with transparency the space where the model
gives classification points outside the range the simulation data
set, and consequently those predictions should be treated very
carefully and in general untrusted.

Analogously, and following the example we have calculated
the probability to finish the project in time depending on the
current situation. For this process, several classifying algo-
rithms have obtained the same classification rate. We have
represented the QDA model for its capacity to capture data
correlation. It is interesting to notice that since PV has been
calculated using PERT (and consequently is too optimistic) and
that there are activities not yet performed with high variance,
the perspectives to complete the project without delay are low
even in the most favorable situations for this control stage. So
much so that in this case there is not any classification boundary.

Again, our analysis can provide more information to the
project manager. It is undoubtedly interesting to estimate the
over-run probabilities but it is also relevant to predict their size.
From the simulation data and pivoting again for the level of
project advancement given by the earned value, for each pair
time—cost we can figure out the simulated final duration and
total cost of the project (Fig. 7, left figures). This dataset can
feed regression models to forecast the expected time and cost of
the project if it follows the expected variability. In order to
illustrate this process, we have fit two models for each case

Subsampling of original data
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20000~ Overcost

fg * No
o
A352.14 * Yes
150007 2269.73
638032
27042
4937
10000 -
| ! |
0 5 10
Time
Subsampling of original data
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20000 - Delay
a * No
o
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15000 - 028
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A
;044
10000 -
0 5 10
Time

Cost

Cost
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(time and cost): a Generalized Additive Model with natural
splines and a Generalized Additive Model with local regres-
sion. An ANOVA test reports that for this case the Generalized
Additive Model with natural splines gives better results with a
significance of 0.001. The prediction performance of both
models can be observed in Fig. 7 where the models have been
used to make predictions over a grid and the prediction values
have been represented with a heat map (using green color for
favorable values and red for problematic ones). The area of data
of the grid that is outside the case of study is represented with
transparency; again, in this area the predictions of the models
may be erroneous.

All this information can be visually integrated in two intuitive
graphical control figures (Fig. 8) very similar to the classical
Earned Value Management charts. In just two pictures a project
manager can obtain not only the popular EVM ratios and indexes
but also predictions about the probabilities and expected cost and
durations, boundary classifications and the data ranges in which
the project is under the expected variability.

At a desired time AT, where Earned Value in the example in
Fig. 8 is 50% of BAC (50% EV) and actual cost AC, the project
manager can have: the probability that the project is not within
the expected variability of the project (represented in Fig. § as
p(Anomaly)), the probability of over-cost (p(OC)), the expected
over-cost (negative values represent no over-cost), and the bound-
ary that classifies the point in the “not-expected-over-cost” area
(under the line) (these four measures in the top part of Fig. 8); and

Over-cost
1 1 L 1
25000 “ﬁ‘—
20000
15000
20000 o
10000
5000
15000 . B
2695.81 0
-5000
10000 o
T T T T T T T -10000
0 2 4 6 8 10 12
Time
Delay
1 1 1 1 1
25000 12
10
8
2 4
0000 6
4
2
15000 .
0.41 0
-2
10000 -4
T T T T T T T
0 2 4 6 8 10 12
Time

Fig. 7. Project analysis as a regression problem. Simulation results are labeled with the final simulated cost (up-left) and simulated total duration (bottom-left). These
datasets are used to fit regression models (right). These models give an estimation of the probability of the expected over-cost (up-right) or expected delay

(bottom-right).
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Fig. 8. Information obtained by the methodology integrated with the classical Earned Value Management graph. The picture on the top represents the expected
over-cost, the probability of over-cost, p(OC) and the range of expected variability of the project for the given advancement of the project measured in terms of EV.
Analogous measures are represented for the time in the second picture (bottom).

again the probability of the project in an anomaly situation
(p(Anomaly)), the probability of delay (p(D)) and the expected
delay (these three measures in the bottom part of Fig. 8).

5. Conclusions

In this work we have proposed a refinement for the traditional
Earned Value Management method to control projects stochas-
tically modeled. At any stage in the development of the project,
the project manager can monitor and control the status of the
project. The only data that are needed to feed the algorithm are the
stochastic definition of the project, the planned value curve, and
the traditional raw calculations of the EVM: EV, AT and AC in
that moment. The technique generates multitude of projects
compatible with the definition of the project by Monte Carlo
simulation. Using EV as the pivotal measure of the advancement,

the project can be analyzed as an Anomaly Detection, classi-
fication and regression problems.

The approach allows detecting anomaly situations in regard
to the project definition taking into account the possible
correlation between time and cost that previous methodologies
ignored. Besides, probabilities of over-runs and the expected
time and duration can be also calculated. All this information can
be also visually integrated in an intuitive framework compatible
with traditional EVM.

No classifier or regression technique is universally better than
any other for every possible context, and predicting in advance the
relative performance is a challenging task (Bradley, 1997; Hastie
et al., 2009). The proposed framework is independent from the
algorithms and can be adapted to be used with any other or future
detection, classification and regression method. To illustrate the
example some of the state of the art techniques have been used,
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however the approach does not rely on the precise classification or
regression algorithm used. On the contrary, we propose the
assessment of several techniques and depending on the case to
choose the appropriate one for the specific project using cross-
validation. Future research may figure out the a priori relationship
between the properties of the project (number of tasks, probability
distributions used, degree of parallelization of the project, etc.) and
the prediction results of the different classifiers and forecasting
methods, this could reduce the computing time necessary to
elaborate the control charts and reports.
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